LVIS553 transcriptional regulator specifically recognizes novobiocin as an effector molecule.

نویسندگان

  • Fernando A Pagliai
  • Christopher L Gardner
  • Santosh G Pande
  • Graciela L Lorca
چکیده

In this study we aimed to identify small molecules with high affinity involved in the allosteric regulation of LVIS553, a MarR member from Lactobacillus brevis ATCC367. Using high throughput screening, novobiocin was found to specifically bind LVIS553 with a K(D) = 33.8 +/- 2.9 microM consistent with a biologically relevant ligand. Structure guided site-directed mutagenesis identified Lys(9) as a key residue in novobiocin recognition. The results found in vitro were correlated in vivo. An increased tolerance to the antibiotic was observed when LVIS553 and the downstream putative transport protein LVIS552 were either expressed in a low copy plasmid in L. brevis or as a single copy chromosomal insertion in Bacillus subtilis. We provide evidence that LVIS553 is involved in the specific regulation of a new mechanism of tolerance to novobiocin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis.

The biosynthetic gene cluster of the aminocoumarin antibiotic novobiocin contains two putative regulatory genes, i.e. novE and novG. The predicted gene product of novG shows a putative helix-turn-helix DNA-binding motif and shares sequence similarity with StrR, a well-studied pathway-specific transcriptional activator of streptomycin biosynthesis. Here functional proof is provided, by genetic a...

متن کامل

Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae

Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphoryla...

متن کامل

Characterization of DNA Binding Sites of RokB, a ROK-Family Regulator from Streptomyces coelicolor Reveals the RokB Regulon

ROK-family proteins have been described to act either as sugar kinases or as transcriptional regulators. Few ROK-family regulators have been characterized so far and most of them are involved in carbon catabolite repression. RokB (Sco6115) has originally been identified in a DNA-affinity capturing approach as a possible regulator of the heterologously expressed novobiocin biosynthetic gene clus...

متن کامل

Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import.

The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal A...

متن کامل

Expression, purification, crystallization and preliminary X-ray analysis of the DNA-binding domain of a Chlamydia trachomatis OmpR/PhoB-subfamily response regulator homolog, ChxR.

Two-component signal transduction systems in bacteria are a primary mechanism for responding to environmental stimuli and adjusting gene expression accordingly. Generally in these systems a sensor kinase phosphorylates a response regulator that regulates transcription. Response regulators contain two domains: a receiver domain and an effector domain. The receiver domain is typically phosphoryla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 22  شماره 

صفحات  -

تاریخ انتشار 2010